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Abstract—Capacitive wireless power transfer utilizes capacitive
coupling to transfer electrical energy wirelessly. However, with
variation in distance or alignment, this coupling varies and as a
result the efficiency and power transfer varies. In this work, we
propose a frequency agile mode, using frequency bifurcation,
that allows for a nearly coupling-independent regime for a
capacitive wireless power transfer system with one transmitter
and two receivers. The conditions for bifurcation are described
and analytical expressions for the power and transducer gains
are determined. It is shown that, when operating at the secondary
resonances, nearly constant efficiency and power transfer to the
load can be achieved.

Index Terms—capacitive wireless power transfer, frequency
bifurcation, single input multiple outputs

I. INTRODUCTION

Capacitive wireless power transfer (CPT) is a form of
wireless power transfer (WPT) that utilizes capacitive coupling
to transfer electrical energy between one or more transmitters
to one or more receivers without the need for physical con-
nections. CPT offers several advantages, including flexibility
in design, high efficiency, long-range operation, multi-device
charging, environmental compatibility, and scalability, making
it a promising technology for wireless power transfer in
various applications, such as charging of mobile devices, pow-
ering sensors in remote locations, and energizing implantable
medical devices [1]–[4].

As mentioned above, one of the advantages of CPT is
multi-device charging, which refers to the ability of CPT to
simultaneously charge or power multiple devices from a single
transmitter, commonly referred to as a single input multiple
outputs (SIMO) configuration. This can be particularly ben-
eficial in scenarios where multiple devices must be charged
simultaneously, such as in smart homes, offices, or public
charging stations.

An interesting phenomenon observed in CPT is frequency
bifurcation [5]–[7], where multiple frequencies exist for which
the input impedance is matched (i.e., the input reactance

equals zero), and hence, multiple resonant frequencies ex-
ist. This phenomenon is also observed in inductive wireless
power transfer (IPT) [8]. By applying frequency bifurcation, a
(nearly) constant efficiency and power transfer can be realized,
even at fluctuating coupling, by sweeping the frequency to
realize a purely resistive input impedance. This has been
shown for single input single output (SISO) systems for both
IPT [8] and CPT [5], [6].

The conditions for bifurcation in SIMO systems have been
derived in [7]. However, to the best of our knowledge, a
coupling-independent solution for SIMO CPT has not been
presented in analytic form, and the coupling-independent
regime due to this bifurcation has not been explored for these
systems yet.

In this study, we will investigate the application of a fre-
quency agile approach utilizing the bifurcation phenomenon to
achieve a CPT system with one transmitter and two receivers
that remains unaffected by fluctuations of the coupling. The
system and a mathematical notation using the admittance
matrix are presented, and the input admittance is used to de-
termine the conditions for bifurcation. Analytical expressions
for the power and transducer gains are derived, and, using
the bifurcation conditions, expressed in normalized circuit
parameters. The results are visually presented, using two
illustrative examples, one with equal and one with unequal
receivers, showing a nearly constant efficiency and power
regime with significantly increased output power compared
to a fixed frequency approach.

II. METHODS

A. Circuit description

We consider the equivalent circuit of a CPT system with a
single transmitter and two receivers, as shown in Fig. 1. The
supply of the transmitter is represented by a sinusoidal current
source with peak value IS and shunt conductance GS , and the
purely restive load of the receivers is given by conductances



Fig. 1. Equivalent circuit representation of a single input, two outputs CPT
system.

GL,1 and GL,2. The capacitive link is represented by the
capacitances Ci (i = 0, 1, 2), and their mutual coupling
capacitances C01 and C02. The shunt inductances Li are used
to create a resonant circuit by using an inductance of 1/ω2

0Ci,
with ω0 the operating angular frequency of the current source.
The inductor and capacitor losses are taken into account by
their equivalent series resistances (ESRs), RLi

and RCi
. Note

that because of the introduction of these ESRs, the resonant
frequency is slightly changed, however, this change is small
for practical CPT systems and can therefore be neglected.

B. Admittance matrix

The CPT system can be considered as a multiport with one
input port and two output ports, indicated in Fig. 1, which can
be represented by an admittance matrix Y [9]:

Y =

y00 y01 y02
y10 y11 y12
y20 y21 y22

 . (1)

The diagonal and off-diagonal terms of the admittance matrix
Y are given by:

yxx =
1

RLx + jωLx
+

1

RCx + 1
jωCx

, (2)

yxy = −jωCxy. (3)

In order to generalize the circuit analysis, for any possible
operating frequency and power levels, it is convenient to
introduce normalized quantities. We define the normalized
frequency u as:

u =
ω

ω0
, (4)

and the normalized ESRs and load conductances RCi
, RLi

and gL,i as:
rCi

= ω0CiRCi
, (5)

rLi
=

RLi

ω0Ci
, (6)

gL,i =
GL,i

ω0Ci
. (7)

For high-quality factors (i.e., efficient passive components),
commonly encountered in practical CPT applications, we can
simplify the admittance matrix with the normalized quantities
by neglecting the squared normalized resistances with respect
to u2, and find the diagonal and off-diagonal entries of the
approximate admittance matrix Ya as [6]:

yxx = ω0Cx

(
rCxu

2 +
rLx

u2
+ j

u2 − 1

u

)
, (8)

yxy = −j
√
CxCyω0kxyu, (9)

with kxy the coupling coefficient, given by:

kxy =
Cxy√
CxCy

. (10)

C. Input admittance

The input admittance Yin of the considered multiport system
is given by [10]:

Yin = y00 +
y02M02 − y01M01

M00
, (11)

with M0i the minor of the matrix Ya + YL and YL the
diagonal load admittance matrix.

To simplify the notation, the following definitions are intro-
duced:

ai = 1 + 2gL,irCi
(12)

bi = 2− g2L,i (13)

ci = 1 + 2gL,irLi
(14)

d = rL0
+ rL1

+ rL2
(15)

e = rC0
+ rC1

+ rC2
(16)

ri = ri = rLi
+ rCi

. (17)

We can express the real (gin) and imaginary (bin) parts
of the normalized input admittance yin = Yin/ω0C0 by
neglecting r2Ci

, r2Li
and rCirLi with respect to u2 as:

gin = rC0u
2 +

rL0

u2
+

k201u
2
(
rC1u

4 + gL1u
2 + rL1

)
a1u4 − b1u2 + c1

+
k202u

2
(
rC2u

4 + gL2u
2 + rL2

)
a2u4 − b2u2 + c2

,

(18)

bin =
u2 − 1

u

(
1− k201u

4

a1u4 − b1u2 + c1
− k202u

4

a2u4 − b2u2 + c2

)
.

(19)
From (19) it is evident that the input susceptance equals

zero if the normalized frequency u is one, i.e., at the resonant
frequency ω0. We call this the primary resonant frequency.



Furthermore, it is apparent that other frequencies exist where
the input susceptance equals zero. We can find these other
frequencies by substituting u2 = x, and solving the quartic
equation:

k201x
2

a1x2 − b1x+ c1
+

k202x
2

a2x2 − b2x+ c2
= 1. (20)

For a system with identical receivers (i.e., a1 = a2 = a,
b1 = b2 = b and c1 = c2 = c ), this quartic equation reduces
to: (

a− k201 − k202
)
x2 − bx+ c = 0. (21)

For a CPT system that fulfills the requirement of a non-
negative discriminant (i.e. k201 + k202 < a − b2

4c ) and k201 +
k202 < a, only the primary resonant frequency is present for
b < 0, and two distinct secondary frequencies exists for b > 0,
following [7]:

u± =

√
b±

√
b2 − 4c (a− k201 − k202)

2 (a− k201 − k202)
. (22)

At the primary (u = 1) and secondary (u = u±) reso-
nant frequencies, the normalized input admittance is real and
equals:

gin(u = 1) = r0+
(gL,1 + r1) k01

2

a1 − b1 + c1
+
(gL,2 + r2) k02

2

a2 − b2 + c2
, (23)

gin(u = u±) = gL+
bd

c
+
1

2

(
e

a− k201 − k202
− d

c

)
h±, (24)

with h± equal to:

h± =

(
b±

√
b2 − 4c (a− k201 − k202)

)
. (25)

D. Power gain

The power gain GP , commonly referred to as the effi-
ciency of a WPT network, is defined as the quotient of the
load power PL, which is the sum of the power of each
individual load, by the input power Pin. For the given WPT
system, the input power is given by:

Pin =
1

2
Gin|V0|2 (26)

and the total power dissipated at the loads is given by:

PL =
1

2

(
GL,1|V1|2 +GL,2|V2|2

)
, (27)

which gives us the following expression for the power gain:

GP =
PL

Pin
=

GL,1

Gin

∣∣∣∣V1

V0

∣∣∣∣2 + GL,2

Gin

∣∣∣∣V2

V0

∣∣∣∣2 . (28)

We can express V1

V0
and V2

V0
as a function of the system

admittances as:
V1

V0
=

−y10
y11 + YL,1

(29)

and
V2

V0
=

−y20
y22 + YL,2

, (30)

with YL,i the load admittances.
Using a simple but elaborate algebraic restatement, we can

express (28) as:

GP =
k201u

4

a1u4 − b1u2 + c1

gL,1

gin
+

k202u
4

a2u4 − b2u2 + c2

gL,2

gin
.

(31)
For a system with identical receivers (31) simplifies to:

GP =

(
k201 + k202

)
u4

au4 − bu2 + c

gL
gin

, (32)

with gL = gL,1+gL,2. At the primary and secondary resonant
frequencies, the power gain is given by:

GP (u = 1) =

(
k201 + k202

)
gL

gLr0 (gL + 2r1) + (k201 + k202) (gL + r1)
(33)

GP (u = u±) =
gL

gL + bd
c + 1

2

(
e

a−k2
01−k2

02
− d

c

)
h±

. (34)

E. Transducer gain

The transducer gain GT is defined as the quotient of the
load power PL by the maximum input power, also called
the available power of the generator, PAG. For a fixed PAG,
maximizing GT corresponds to maximizing the amount of
power transfer to the load.

For the given CPT system, the available power of the
generator is given by:

PAG =
|Is|2

8GS
, (35)

which gives us the following expression for the transducer
gain:

GT =
PL

PAG
=

4GS(GL,1|V1|2 +GL,2|V2|2)
|IS |2

(36)

We can express V1 and V2 as a function of the system
admittances and peak value of the current source IS by
multiplying (29) and (30) with V0, where V0 is given by:

V0 =
IS

YS + y00 − y01y10

y11+YL,1
− y02y20

y22+YL,2

. (37)

Using a simple but elaborate algebraic restatement, we can
express (36) as:

GT =
4gingS

|yin + gS |2
Gp. (38)

At the primary and secondary resonant frequencies, the
transducer gain is given by:

GT (u = 1) =

4
(
k201 + k202

)
gSg

2
L (gL + 2r1)

[(k201 + k202) (gL + r1) + gL (gS + r0) (gL + 2r1)]
2

(39)



TABLE I
NORMALIZED QUANTITIES FOR THE CPT SYSTEM WITH IDENTICAL AND

NON-IDENTICAL RECEIVERS.

Normalized quantity Identical receivers Non-identical receivers
gS 0.010 0.010
rL0

0.010 0.010
rL1

0.015 0.015
rL2

0.015 0.025
rC0 0.005 0.005
rC1 0.005 0.005
rC2 0.005 0.010
gL,1 0.150 0.150
gL,2 0.150 0.200

GT (u = u±) =
4gSgL[

gS + gL + bd
c + 1

2

(
e

a−k2
01−k2

02
− d

c

)
h±

]2 .
(40)

It is worth mentioning that in the lossless case (rCi
= 0,

rLi
= 0), the denominators of (34) and (40) reduce to gL and

(gS + gL)
2 respectively. Hence, at the secondary resonances,

the gains are independent of kxy . Furthermore, when the
inductor and capacitor quality factors are high, the coupling-
dependent terms in (34) and (40) are typically small with
respect to gL and, therefore, nearly coupling-independent gains
can be achieved.

III. RESULTS AND DISCUSSION

A. Identical receivers

We consider a CPT system with identical receivers, using
the normalized quantities as given in Tab. I.

Figs. 2 and 3 show GP and GT as a function of the coupling
coefficient k02 for a coupling coefficient k01 equal to zero and
0.1 respectively. Note that k01 equal to zero corresponds with
a system that only has one receiver (i.e., a SISO system), and
the result matches the result in [6].

In both scenarios, at the primary resonance, the power gain
GP increases with an increasing coupling coefficient k02.
For k01 equal to zero, the transducer gain increases with
an increasing coupling coefficient for a coupling below the
optimal coupling coefficient kc (i.e., the coupling coefficient
that maximizes the power transfer), and decreases again for
a coupling coefficient larger than the optimal coupling co-
efficient. As k01 equal to 0.1 is already larger than kc, the
maximum GT is found at k01 equal to zero and decreases
with increasing k02.

For a coupling coefficient higher than the bifurcation
coupling kB (i.e. the coupling coefficient that satisfies
k02 =

√
a− b2

c − k201), the secondary resonances are shown.
In both scenarios, both GP and GT increase slightly for u+

and decrease slightly for u−. We can see clearly the advantage
of the coupling-independent modes for CPT applications; we
obtain a higher power transfer to the load at the expense of
only a small reduction in efficiency.

Fig. 2. Power GP and transducer gain GT , as a function of the coupling
coefficient k02 for a coupling coefficient k01 equal to zero.

Fig. 3. Power and transducer gain GP , GT as a function of the coupling
coefficient k02 for a coupling coefficient k01 equal to 0.1.

Fig. 4 shows the power gain GP as a function of the
coupling coefficients k01 and k02 for the given system with
equal receivers. At the primary resonance, GP increases for
higher coupling coefficients. Note that the side along the
k02 axis corresponds to Fig. 2. In Fig. 5, GP is shown as
a function of the coupling coefficients k01 and k02 using
u+ for the sum of the coupling coefficients higher than the
bifurcation coupling. A nearly constant GP can be observed
for varying coupling.

Fig. 6 shows GT as a function of the coupling coefficients
k01 and k02 for the given system with equal receivers.
GT increases with the coupling coefficients until the sum
of the coupling coefficients reaches the optimal coupling
coefficient. For coupling coefficients k01 + k02 > kc, the
transducer gain GT decreases for the primary resonance. For



Fig. 4. Power gain GP as a function of the coupling coefficients k01 and
k02 for a system with two equal receivers.

Fig. 5. Power gain GP as a function of the coupling coefficients k01 and
k02 for a system with two equal receivers using u+.

coupling coefficients above the bifurcation coupling, when
k01+k02 > kB , we observe a nearly constant GT for variable
coupling. Note that this nearly constant GT at the secondary
resonances is significantly larger compared to the GT at the
main resonance.

Although we observe a nearly constant power regime when
looking at the total system, this is different when looking at
each receiver’s transducer gain. In Fig. 7, GT is shown for
the individual receivers for a coupling k01 equal to 0.1. It is
evident that for the individual receivers, the power is still a
function of the coupling coefficient.

B. Non-identical receivers

Although practical CPT applications may often aim to use
identical receivers, (small) deviations between the receivers

Fig. 6. Transducer gain GT as a function of the coupling coefficients k01
and k02 for a system with two equal receivers.

Fig. 7. Transducer gain GT of the individual (identical) receivers for the
system with a coupling coefficient k01 equal to 0.1 as a function of the
coupling coefficient k02.

can occur. Therefore, it is interesting to look into a system
with non-identical receivers as well and we will consider a
CPT system with non-identical receivers, using the normalized
quantities as given in Tab. I.

Figs. 8 and 9 show GP and GT as functions of the coupling
coefficient k01 and k02. Note that due to the effect of the
non-identical receivers, where receiver 1 has higher quality
factors for its components compared to receiver 2, the plane
is no longer symmetric for both the coupling coefficient axes.
Because of this, the variation in GT is larger compared to the
scenario with equal receivers. However, we can still clearly see
the higher power transfer benefit of the coupling-independent
modes.



Fig. 8. Transducer gain GT as a function of the coupling coefficients k01
and k02 for a system with two unequal receivers.

Fig. 9. Transducer gain GT as a function of the coupling coefficients k01
and k02 for a system with two unequal receivers.

CONCLUSION

We analytically determined expressions for the power and
transducer gain and showed that these are nearly coupling
independent for the secondary resonances, resulting in a nearly
constant efficiency and power output for varying coupling.

The results are shown using two illustrative numerical
examples, the first using identical, and the second using non-
identical receivers, both scenarios clearly show the advantage
in terms of power transfer to the load for coupling independent
modes.

By accepting a slight decrease in efficiency, it allows for
designs that can achieve a higher power transfer to the load
for fluctuating coupling.

Circuit simulations and measurements on an implemented
SIMO CPT setup to confirm our analytical results are part of
future research.
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